Uniform convergence of cubic spline interpolants
نویسندگان
چکیده
منابع مشابه
Hammerstein uniform cubic spline adaptive filters: Learning and convergence properties
In this paper a novel class of nonlinear Hammerstein adaptive filters, consisting of a flexible memory-less function followed by a linear combiner, is presented. The nonlinear function involved in the adaptation process is based on a uniform cubic spline function that can be properly modified during learning. The spline control points are adaptively changed by using gradient-based techniques. T...
متن کاملNear minimally normed spline quasi-interpolants on uniform partitions
Spline quasi-interpolants are local approximating operators for functions or discrete data. We consider the construction of discrete and integral spline quasi-interpolants on uniform partitions of the real line having small infinite norms. We call them near minimally normed quasi-interpolants: they are exact on polynomial spaces and minimize a simple upper bound of their infinite norms. We give...
متن کاملOn the uniform convergence of the Chebyshev interpolants for solitons
We discuss polynomial interpolation and derive sufficient conditions for the uniform convergence of Chebyshev interpolants for different classes of functions. Rigorous results are illustrated with a number of examples which include solitons on an infinite line with algebraic, exponential and Gaussian decay rates. Suitable mappings of the real line to the interval [−1, 1] are considered for each...
متن کاملAnalytic Regularization of Uniform Cubic B-spline Deformation Fields
Image registration is inherently ill-posed, and lacks a unique solution. In the context of medical applications, it is desirable to avoid solutions that describe physically unsound deformations within the patient anatomy. Among the accepted methods of regularizing non-rigid image registration to provide solutions applicable to medical practice is the penalty of thin-plate bending energy. In thi...
متن کاملConvergence of Rational Interpolants∗
The convergence of (diagonal) sequences of rational interpolants to an analytic function is investigated. Problems connected with their definition are shortly discussed. Results about locally uniform convergence are reviewed. Then the convergence in capacity is studied in more detail. Here, a central place is taken by a theorem about the convergence in capacity of rational interpolants to funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1973
ISSN: 0021-9045
DOI: 10.1016/0021-9045(73)90054-3